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FUNCTIONS

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, parabolas, and circles are re-
viewed in the Appendices.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length
of time the investment is held. The area of a circle depends on the radius of the circle. The
distance an object travels at constant speed along a straight-line path depends on the
elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x” and write this
symbolically as

In this notation, the symbol ƒ represents the function, the letter x is the independent vari-
able representing the input value of ƒ, and y is the dependent variable or output value of
ƒ at x.

y = ƒ(x)  (“y equals ƒ of x”).

FPO

DEFINITION A function ƒ from a set D to a set Y is a rule that assigns a unique
(single) element to each element x H D .ƒsxd H Y

The set D of all possible input values is called the domain of the function. The set of
all values of ƒ(x) as x varies throughout D is called the range of the function. The range
may not include every element in the set Y. The domain and range of a function can be any
sets of objects, but often in calculus they are sets of real numbers interpreted as points of a
coordinate line. (In Chapters 13–16, we will encounter functions for which the elements of
the sets are points in the coordinate plane or in space.)



Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation is a rule that calculates the
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function with a formula and the domain is not
stated explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, the so-called natural domain. If we
want to restrict the domain in some way, we must say so. The domain of is the en-
tire set of real numbers. To restrict the domain of the function to, say, positive values of x,
we would write 

Changing the domain to which we apply a formula usually changes the range as well.
The range of is The range of is the set of all numbers ob-
tained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), the
range is or or 

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of many real-valued functions of a real variable are inter-
vals or combinations of intervals. The intervals may be open, closed, or half open, and may
be finite or infinite. The range of a function is not always easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range whenever
we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give
an example of a function as a machine. For instance, the key on a calculator gives an out-
put value (the square root) whenever you enter a nonnegative number x and press the key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-
ates an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range ( y)

[0, 1]

Solution The formula gives a real y-value for any real number x, so the domain
is The range of is because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,

for 
The formula gives a real y-value for every x except For consistency

in the rules of arithmetic, we cannot divide any number by zero. The range of the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since

That is, for the number is the input assigned to the output
value y.

The formula gives a real y-value only if The range of is
because every nonnegative number is some number’s square root (namely, it is the

square root of its own square).
In the quantity cannot be negative. That is, or

The formula gives real y-values for all The range of is the
set of all nonnegative numbers.

[0, q d,14 - xx … 4.x … 4.
4 - x Ú 0,4 - xy = 14 - x ,

[0, q d
y = 1xx Ú 0.y = 1x

x = 1>yy Z 0y = 1>(1>y).

y = 1>x ,
x = 0.y = 1>xy Ú 0.y = A2y B2 [0, q dy = x2s-q , q d .

y = x2

[-1, 1]y = 21 - x2
[0, q ds-q , 4]y = 24 - x
[0, q d[0, q dy = 2x
s-q , 0d ´ s0, q ds-q , 0d ´ s0, q dy = 1>x [0, q ds-q , q dy = x2

2x
2x

[4, q d .5y ƒ y Ú 465x2 ƒ x Ú 26 y = x2, x Ú 2,[0, q d .y = x2

“y = x2, x 7 0.”

y = x2

y = ƒsxd

A = pr2
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Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.1 A diagram showing a
function as a kind of machine.

x

a f (a) f (x)

D ! domain set Y ! set containing
the range

FIGURE 1.2 A function from a set D to a
set Y assigns a unique element of Y to each
element in D.





(b)

The graphs of the functions and are shown in
Figure 1.16. Both functions are defined for all (you can never divide by zero). The
graph of is the hyperbola , which approaches the coordinate axes far from
the origin. The graph of also approaches the coordinate axes. The graph of the
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals and

. The graph of the function g is symmetric about the y-axis; g is increasing on
and decreasing on .s0, q )s-q , 0)

s0, q )
s-q , 0)

y = 1>x2
xy = 1y = 1>x x Z 0

g sxd = x-2 = 1>x2ƒsxd = x-1 = 1>xa = -1  or  a = -2.
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(a)

The graphs of for 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval and also rise more steeply for

Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval

and increasing on ; the odd-powered functions are increasing over the entire
real line .s-q , q )

[0, q ds-q , 0]

ƒ x ƒ 7 1.
s-1, 1d ,

n = 1,ƒsxd = xn ,

a = n,  a positive integer.

x

y

x

y

0

1

1

0

1

1

y ! 1
x y ! 1

x2

Domain: x " 0
Range:   y " 0

Domain: x " 0
Range:   y # 0

(a) (b)

FIGURE 1.16 Graphs of the power functions for part (a) 
and for part (b) .a = -2

a = -1ƒsxd = xa

(c)

The functions and are the square root and cube
root functions, respectively. The domain of the square root function is but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17
along with the graphs of and (Recall that and

)

Polynomials A function p is a polynomial if

where n is a nonnegative integer and the numbers are real constants
(called the coefficients of the polynomial). All polynomials have domain If thes-q , q d .

a0 , a1 , a2 , Á , an

psxd = an xn + an-1xn-1 + Á + a1 x + a0

x2>3 = sx1>3d2 .
x3>2 = sx1>2d3y = x2>3 .y = x3>2

[0, q d ,
g sxd = x1>3 = 23 xƒsxd = x1>2 = 2x

a = 1
2 , 13 , 32 , and 23 .
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leading coefficient and then n is called the degree of the polynomial. Linear
functions with are polynomials of degree 1. Polynomials of degree 2, usually written
as are called quadratic functions. Likewise, cubic functions are
polynomials of degree 3. Figure 1.18 shows the graphs of
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

psxd = ax3 + bx2 + cx + d
psxd = ax2 + bx + c ,

m Z 0
n 7 0,an Z 0
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FIGURE 1.18 Graphs of three polynomial functions.
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FIGURE 1.19 Graphs of three rational functions. The straight red lines are called asymptotes and are not part
of the graph.

Rational Functions A rational function is a quotient or ratio where p
and q are polynomials. The domain of a rational function is the set of all real x for which

The graphs of several rational functions are shown in Figure 1.19.qsxd Z 0.

ƒ(x) = p(x)>q(x),
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In Chapter 3 we use that slope property to prove e is the number the quantity
approaches as x becomes large without bound. That result provides one way to

compute the value of e, at least approximately. The graph and table in Figure 1.58 show the
behavior of this expression and how it gets closer and closer to the line 

as x gets larger and larger. (This limit idea is made precise in the next
chapter.) A more complete discussion of e is given in Chapter 7.
e L 2.718281828

y =

(1 + 1>x)x

Exponential Growth and Decay

The exponential functions , where k is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function is a model for exponential
growth if and a model for exponential decay if Here y0 represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by where P is the initial investment, r is the interest
rate as a decimal, and t is time in units consistent with r. An example of exponential decay
is the model , which represents how the radioactive element carbon-14
decays over time. Here A is the original amount of carbon-14 and t is the time in years.
Carbon-14 decay is used to date the remains of dead organisms such as shells, seeds, and
wooden artifacts. Figure 1.59 shows graphs of exponential growth and exponential decay.

y = A # e-1.2*10-4t

y = P # ert,

k 6 0.k 7 0
y = y0 ekx

y = ekx
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FIGURE 1.58 A graph and table of values for both suggest that as x gets 
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FIGURE 1.59 Graphs of (a) exponential growth, and (b) exponential decay,
k = -1.2 6 0.
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EXAMPLE 3 Investment companies often use the model in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2000 at an
annual interest rate of 5.5%.

Solution Let represent 2000, represent 2001, and so on. Then the exponen-
tial growth model is , where (the initial investment), (ther = 0.055P = 100y(t) = Pert

t = 1t = 0

y = Pert



annual interest rate expressed as a decimal), and t is time in years. To predict the amount in
the account in 2004, after four years have elapsed, we take and calculate

Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1.

EXAMPLE 4 Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If is the number of radioactive nuclei present at time zero, the number
still present at any later time t will be

The number r is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined ex-
perimentally to be about when t is measured in years. Predict the percent
of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount of carbon-14 nuclei, after 866 years we are left
with the amount

Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, so
about 10% of the original nuclei have decayed. In Example 7 in the next section, you will
see how to find the number of years required for half of the radioactive nuclei present in a
sample to decay (called the half-life of the substance).

You may wonder why we use the family of functions for different values of the con-
stant k instead of the general exponential functions In the next section, we show
that the exponential function is equal to for an appropriate value of k. So the formula

covers the entire range of possibilities, and we will see that it is easier to use.y = ekx
ekxax

y = ax.
y = ekx

 L (0.901)y0.

y(866) = y0 e (-1.2*10-4)(866)

y0

r = 1.2 * 10-4

y = y0 e-rt,  r 7 0.

y0

 = 124.61.

 = 100e0.22

y(4) = 100e0.055(4)

t = 4
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Exercises 1.5

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate
coordinate plane and label each curve with its equation.

1.

2.

3. and 4. and 

5. and 6. and 

In each of Exercises 7–10, sketch the shifted exponential curves.

7. and 

8. and 

9. and 

10. and y = -1 - e-xy = -1 - ex

y = 1 - e-xy = 1 - ex

y = 3-x + 2y = 3x + 2

y = 2-x - 1y = 2x - 1

y = -e-xy = -exy = 1>exy = ex

y = -3ty = 3-ty = -2ty = 2-t

y = 3x, y = 8x, y = 2-x, y = (1>4)x

y = 2x, y = 4x, y = 3-x, y = (1>5)x

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exercises
11–20.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. a26
3
b2a 222

b4

A23 B1>2 # A212 B1>2223 # 723

A1322 B22>2A251>8 B4 35>3
32>344.2

43.7

91>3 # 91>6162 # 16-1.75



Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises
21–24.

21. 22.

23. 24.

Applications
In Exercises 25–28, use graphs to find approximate solutions.

25. 26.

27. 28.

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.
29. Population growth The population of Knoxville is 500,000 and

is increasing at the rate of 3.75% each year. Approximately when
will the population reach 1 million?

30. Population growth The population of Silver Run in the year
1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.

b. Approximately when did the population reach 50,000?

31. Radioactive decay The half-life of phosphorus-32 is about
14 days. There are 6.6 grams present initially.

3 - 2-x = 03x - 0.5 = 0

ex = 42x = 5

ƒ(x) = 3
1 - e2xg(t) = 21 + 3-t

g(t) = cos(e-t)ƒ(x) = 1
2 + ex
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a. Express the amount of phosphorus-32 remaining as a function
of time t.

b. When will there be 1 gram remaining?

32. If John invests $2300 in a savings account with a 6% interest rate
compounded annually, how long will it take until John’s account
has a balance of $4150?

33. Doubling your money Determine how much time is required
for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

34. Tripling your money Determine how much time is required for
an investment to triple in value if interest is earned at the rate of
5.75% compounded continuously.

35. Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

T

T

1.6 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function as the inverse of the exponential function

, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion assigns the same value, 1, to both of the numbers and ; the sines of

and are both Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

13>2.2p>3p>3 +1-1ƒsxd = x2

y = ex
y = ln x

DEFINITION A function ƒ(x) is one-to-one on a domain D if 
whenever in D.x1 Z x2

ƒsx1d Z ƒsx2d

EXAMPLE 1 Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.





Only a one-to-one function can have an inverse. The reason is that if and
for two distinct inputs and then there is no way to assign a value to 

that satisfies both and 
A function that is increasing on an interval so it satisfies the inequality 

when is one-to-one and has an inverse. Decreasing functions also have an inverse.
Functions that are neither increasing nor decreasing may still be one-to-one and have an
inverse, as with the function for and defined on 
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function
from its graph, we start at a point x on the x-axis, go vertically to the graph, and then move
horizontally to the y-axis to read the value of y. The inverse function can be read from the
graph by reversing this process. Start with a point y on the y-axis, go horizontally to the
graph of and then move vertically to the x-axis to read the value of 
(Figure 1.61).

x = ƒ-1sydy = ƒsxd,

(-q , q )ƒ(0) = 0,x Z 0ƒ(x) = 1>xx2 7 x1

ƒsx2d 7 ƒsx1d
ƒ-1sƒsx2dd = x2 .ƒ-1sƒsx1dd = x1

ƒ-1sydx2 ,x1ƒsx2d = y
ƒsx1d = y
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(a) To find the value of f at x, we start at x,
go up to the curve, and then over to the y-axis.
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(b) The graph of  f –1 is the graph of f, but
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gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f –1 is the
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(c) To draw the graph of f –1 in the
more usual way, we reflect the
system across the line y 5 x. 
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(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f –1

as a function of x.

FIGURE 1.61 Determining the graph of from the graph of The graph
of is obtained by reflecting the graph of ƒ about the line y = x.ƒ -1

y = ƒsxd .y = ƒ -1sxd

We want to set up the graph of so that its input values lie along the x-axis, as is
usually done for functions, rather than on the y-axis. To achieve this we interchange the x

ƒ-1







EXAMPLE 5 Here are examples of the properties in Theorem 1.

(a) Product Rule

(b) Quotient Rule

(c) Reciprocal Rule

Power Rule

Because and are inverses, composing them in either order gives the identity function.loga xax

 = - ln 23 = -3 ln 2

ln 
1
8 = - ln 8

ln 
x + 1
2x - 3 = ln (x + 1) - ln (2x - 3)

ln 4 + ln sin x = ln (4 sin x)

1.6 Inverse Functions and Logarithms 45

Inverse Properties for and 

1. Base a:

2. Base e: x 7 0ln ex = x,e ln x = x,

a 7 0, a Z 1, x 7 0loga ax = x,a loga x = x,

loga xax

Every exponential function is a power of the natural exponential function.

That is, is the same as raised to the power for k = ln a.ln a: ax = ekxexax

ax = ex ln a

Substituting for x in the equation enables us to rewrite as a power of e:

Substitute for x in

Power Rule for logs

Exponent rearranged

Thus, the exponential function is the same as for k = ln a.ekxax

 = e (ln a) x.

 = ex ln a

x = e ln x.axax = e ln (ax)

axx = e ln xax

For example,

, and

Returning once more to the properties of and we have

Inverse Property for and 

Power Rule for logarithms, with

Rewriting this equation as shows that every logarithmic function is a
constant multiple of the natural logarithm This allows us to extend the algebraic prop-
erties for to For instance, loga bx = loga b + loga x.loga x.ln x

ln x.
loga x = (ln x)>(ln a)

r = loga x = (loga x)(ln a).

loga xaxln x = ln (a loga x)

loga x,ax

5-3x = e (ln 5) (-3x) = e -3x ln 5. 2x = e (ln 2) x = ex ln 2

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

(a 7 0, a Z 1)loga x = ln x
ln a

Applications

In Section 1.5 we looked at examples of exponential growth and decay problems. Here we
use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6 If $1000 is invested in an account that earns 5.25% interest compounded
annually, how long will it take the account to reach $2500?


