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1.1

FUNCTIONS

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, parabolas, and circles are re-
viewed in the Appendices.

| Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length
of time the investment is held. The area of a circle depends on the radius of the circle. The
distance an object travels at constant speed along a straight-line path depends on the
elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x” and write this
symbolically as

y = f(x) (“y equals f of x”).

In this notation, the symbol f represents the function, the letter x is the independent vari-
able representing the input value of f, and y is the dependent variable or output value of
fatx.

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique
(single) element f(x) € ¥ to each element xe D.

The set D of all possible input values is called the domain of the function. The set of
all values of f(x) as x varies throughout D is called the range of the function. The range
may not include every element in the set Y. The domain and range of a function can be any
sets of objects, but often in calculus they are sets of real numbers interpreted as points of a
coordinate line. (In Chapters 13—16, we will encounter functions for which the elements of
the sets are points in the coordinate plane or in space.)
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X ey f — f(x)
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FIGURE 1.1 A diagram showing a
function as a kind of machine.

£ @) et

D = domain set Y = set containing
the range

FIGURE 1.2 A function from a set D to a
set Y assigns a unique element of Y to each
element in D.

Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation 4 = 772 is a rule that calculates the
area A4 of a circle from its radius 7 (so 7, interpreted as a length, can only be positive in this
formula). When we define a function y = f(x) with a formula and the domain is not
stated explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, the so-called natural domain. If we
want to restrict the domain in some way, we must say so. The domain of y = x? is the en-
tire set of real numbers. To restrict the domain of the function to, say, positive values of x,
we would write “y = x% x > 0.”

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x? is [0, ©0). The range of y = x2, x = 2, is the set of all numbers ob-
tained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), the
range is {x?|x = 2} or {y|y = 4} or [4, 00).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of many real-valued functions of a real variable are inter-
vals or combinations of intervals. The intervals may be open, closed, or half open, and may
be finite or infinite. The range of a function is not always easy to find.

A function f is like a machine that produces an output value f(x) in its range whenever
we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give
an example of a function as a machine. For instance, the V' x key on a calculator gives an out-
put value (the square root) whenever you enter a nonnegative number x and press the Vi key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-
ates an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with f(a) in Figure 1.2), but each input element x is assigned a single output value f(x).

EXAMPLE 1  Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range ()

y=x (=00, 00) [0, c0)

y=1/x (—00,0)U (0, c0) (—00,0)U (0, )
y=Vx [0, 00) [0, 00)

y=V4-—x (—00,4] [0, 00)
y=VI1-—x? [-1, 1] [0, 1]

Solution  The formula y = x? gives a real y-value for any real number x, so the domain
is (—00, 00). The range of y = x? is [0, 00) because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,
y = (\/y)zfory = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since
v = 1/(1/y). That is, for y # 0 the number x = 1/y is the input assigned to the output
value y.

The formula y = Vx gives a real y-value only if x = 0. The range of y = Vx is
[0, ©0) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4.The formula gives real y-values for all x = 4. The range of V4 — xis [0, 00), the
set of all nonnegative numbers.



1.1 Functions and Their Graphs 7

(a) (b)

FIGURE 1.13 (a) When we add the constant term 1 to the function

y = x2, the resulting function y = x? + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd.
The symmetry about the origin is lost (Example 8).

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is
called a linear function. Figure 1.14a shows an array of lines f(x) = mx where b = 0,
so these lines pass through the origin. The function f(x) = x where m = 1 and b = 0 is
called the identity function. Constant functions result when the slope m = 0 (Figure
1.14b). A linear function with positive slope whose graph passes through the origin is
called a proportionality relationship.

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant function
with slope m = 0.

DEFINITION Two variables y and x are proportional (to one another) if one is
always a constant multiple of the other; that is, if y = kx for some nonzero
constant k.

If the variable y is proportional to the reciprocal 1/x, then sometimes it is said that y is
inversely proportional to x (because 1/x is the multiplicative inverse of x).

Power Functions A function f(x) = x“, where a is a constant, is called a power func-
tion. There are several important cases to consider.
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FIGURE 1.15

X

(a) a = n, apositive integer.

The graphs of f(x) = x", forn = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1, 1), and also rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval
(=00, 0] and increasing on [0, 00); the odd-powered functions are increasing over the entire
real line (—00, 00).

3 oy=x 1 oy=x yoy=xt Y
L L L L L L L L
o 1 o 210 1 * o0 1 * /70 1 .
-1 . . -1

Graphs of f(x) = x",n = 1,2, 3,4, 5, defined for —00 < x < 00,

(b)a=-1 or a=—-2.

The graphs of the functions f(x) = x' = 1/x and g(x) = x> = 1/x* are shown in
Figure 1.16. Both functions are defined for all x # 0 (you can never divide by zero). The
graph of y = 1/x is the hyperbola xy = 1, which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes. The graph of the
function f is symmetric about the origin; f is decreasing on the intervals (—o0, 0) and
(0, 00). The graph of the function g is symmetric about the y-axis; g is increasing on
(=00, 0) and decreasing on (0, 0).

Domain: x # 0
Range: y # 0 0

Domain: x # 0
Range: y>0

(a) (b)

FIGURE 1.16  Graphs of the power functions f(x) = x“ for part (a)a = —1
and for part (b)a = —2.

2

3

The functions f(x) = x'/? = Vx and g(x) =x'? = Vi are the square root and cube
root functions, respectively. The domain of the square root function is [0, 0), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17
along with the graphs of y = x¥? and y = x??. (Recall that x¥?> = (x'/?)? and
x2/3 _ (xl/3)2.)

113
(C) a = 2,3323and

Polynomials A function p is a polynomial if
p(x) = ax" + @, x" N+ -+ aix + ag

where n is a nonnegative integer and the numbers ag, a1, az, ..., a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (—00, 00). If the
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FIGURE 1.17 Graphs of the power functions f(x) = x“ fora = 2:3°2° and 3

leading coefficient a, # 0 and n > 0, then n is called the degree of the polynomial. Linear
functions with m # 0 are polynomials of degree 1. Polynomials of degree 2, usually written
as p(x) = ax? + bx + ¢, are called quadratic functions. Likewise, cubic functions are
polynomials p(x) = ax® + bx?* + cx + d of degree 3. Figure 1.18 shows the graphs of
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

3 2
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y
4r y
B X y=8x* — 14x3 — 9x? + 1lx — 1 y=G=2+ Da—1)
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“10F )
—4r 12+ -

(a) (b) (©)
FIGURE 1.18 Graphs of three polynomial functions.
Rational Functions A rational function is a quotient or ratio f(x) = p(x)/q(x), where p

and ¢ are polynomials. The domain of a rational function is the set of all real x for which
q(x) # 0. The graphs of several rational functions are shown in Figure 1.19.

y
y 8k
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t 5 > 3x2+2
2?3 '[\ 4l
S L . 5

=54 2 \ ]_/ L1ney:§ N

! ! /x 1 ! Ly x 1 X
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(a) (b) (©

FIGURE 1.19 Graphs of three rational functions. The straight red lines are called asymptotes and are not part
of the graph.
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Algebraic Functions Any function constructed from polynomials using algebraic opera-
tions (addition, subtraction, multiplication, division, and taking roots) lies within the class
of algebraic functions. All rational functions are algebraic, but also included are more
complicated functions (such as those satisfying an equation like y* — 9xy + x> = 0,
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

y  y=ala-4

y y=x(1—x)*
_3.2_ 1o

- y=306"-1

r y

2t 1r

1_

1 1
0 * 0] * 0 51 *
-1F 7
-2 b
-3F

(@) (b) ©
FIGURE 1.20 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

1 _n 3w N 5T
NS A \ \/ ’ z\/ \/
21 -1+ 2
(a) f(x) = sinx (b) f(x) = cosx
FIGURE 1.21 Graphs of the sine and cosine functions.

Exponential Functions Functions of the form f(x) = a*, where the base @ > 0 is a
positive constant and a # 1, are called exponential functions. All exponential functions
have domain (—00, 00) and range (0, ©©), so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

y y
y = 10¢ y=10"*

12

10+

8_

y=3% 6

4_

y=2~* 2r

1 1 T —
-1 -0.5 0 0.5 1
(b)

FIGURE 1.22 Graphs of exponential functions.
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Logarithmic Functions These are the functions f(x) = log,x, where the base a # 1 is
a positive constant. They are the inverse functions of the exponential functions, and we
discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four logarithmic
functions with various bases. In each case the domain is (0, ©©) and the range is

(—00, 0).

FIGURE 1.23  Graphs of four logarithmic

functions.

y = logjox

y = logsx

FIGURE 1.24 Graph of a catenary or
hanging cable. (The Latin word catena
means “chain.”)

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercises 1.1

Functions

In Exercises 1-6, find the domain and range of each function.

1 f(x) = 1 + x2 2. fx) =1- Vx

3. F(x) = V5x + 10 4. g(x) = Vx? — 3x
-4 __ 2

5. f(y) = 3 6. G(1) 716

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. y b. y

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a
function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

11. Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the
cube as a function of the diagonal length.
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fossils. In this section we introduce these functions informally, using an intuitive approach.
We give a rigorous development of them in Chapter 7, based on important calculus ideas
and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes
2P, If it doubles again, it becomes 2(2P) = 2?P, and a third doubling gives 2(22P) = 2°P.
Continuing to double in this fashion leads us to the consideration of the function
f(x) = 2*. We call this an exponential function because the variable x appears in the
exponent of 2*. Functions such as g(x) = 10" and A(x) = (1/2)* are other examples of ex-
ponential functions. In general, if a # 1 is a positive constant, the function

fx) =a

is the exponential function with base a.

EXAMPLE 1  In 2000, $100 is invested in a savings account, where it grows by accru-
ing interest that is compounded annually (once a year) at an interest rate of 5.5%.
Assuming no additional funds are deposited to the account and no money is withdrawn,
give a formula for a function describing the amount 4 in the account after x years have
elapsed.

Solution If P = 100, at the end of the first year the amount in the account is the original
amount plus the interest accrued, or

P+ (%)P = (1 + 0.055)P = (1.055)P.

At the end of the second year the account earns interest again and grows to
(1 + 0.055)+(1.055P) = (1.055)*P = 100+ (1.055)%2.  r =100
Continuing this process, after x years the value of the account is
A = 100-(1.055)".

This is a multiple of the exponential function with base 1.055. Table 1.4 shows the
amounts accrued over the first four years. Notice that the amount in the account each year
is always 1.055 times its value in the previous year.

TABLE 1.4 Savings account growth

Year Amount (dollars) Increase (dollars)
2000 100

2001 100(1.055) = 105.50 5.50

2002 100(1.055)% = 111.30 5.80

2003 100(1.055)* = 117.42 6.12

2004 100(1.055)* = 123.88 6.46

In general, the amount after x years is given by P(1 + 7)*, where r is the interest rate
(expressed as a decimal). [
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FIGURE 1.56 Graphs of exponential

functions.

TABLE 1.5 Values of 23 for

rational r closer and closer to \/5

r 2"
1.0 2.000000000
1.7 3.249009585
1.73 3.317278183
1.732 3.321880096
1.7320 3.321880096
1.73205 3.321995226
1.732050 3.321995226
1.7320508 3.321997068
1.73205080 3.321997068
1.732050808 3.321997086

For integer and rational exponents, the value of an exponential function f(x) = a* is
obtained arithmetically as follows. If x = n is a positive integer, the number a” is given by
multiplying a by itself # times:

an = a.al ... .a-
——
n factors
Ifx = 0, then a® = 1, and if x = —n for some positive integer n, then

{

_,,_1_(1)"
a == \a)-

Ifx

Il
—_
~
S
—
=4
w
g
19
e
=}
w
=
s
-
=
@
1)<}
@
=
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=
@
=

which is the positive number that when multiplied by itself » times gives a. If x = p/q is
any rational number, then

allt = \q/a—-” = (\q/;)p.

If x is irrational, the meaning of a* is not so clear, but its value can be defined by con-
sidering values for rational numbers that get closer and closer to x. This informal approach
is based on the graph of the exponential function. In Chapter 7 we define the meaning in a
rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show
them again here in Figure 1.56. These graphs describe the values of the exponential func-
tions for all real inputs x. The value at an irrational number x is chosen so that the graph of
a” has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they
do convey the informal idea. We mean that the value of a*, when x is irrational, is chosen
so that the function f(x) = a is continuous, a notion that will be carefully explored in the
next chapter. This choice ensures the graph retains its increasing behavior whena > 1, or
decreasing behavior when 0 < a < 1 (see Figure 1.56).

Arithmetically, the graphical idea can be described in the following way, using the ex-
ponential f(x) = 2* as an illustration. Any particular irrational number, say x = V3, has
a decimal expansion

V/3 = 1.732050808 . . . .

We then consider the list of numbers, given as follows in the order of taking more and
more digits in the decimal expansion,

1 1.7 ~1.73 A1.732 ~A1.7320 ~1.73205
21,217 9173 1732 L7320 9173205 (1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to \/§ given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these
decimal approximations get closer and closer to \@, it seems reasonable that the list of
numbers in (1) gets closer and closer to some fixed number, which we specify to be 2\/3.

Table 1.5 illustrates how taking better approximations to V3 gives better approxima-
tions to the number 2V3 ~ 3.321997086. It is the completeness property of the real numbers
(discussed briefly in Appendix 6) which guarantees that this procedure gives a single number
we define to be 23 (although it is beyond the scope of this text to give a proof). In a similar
way, we can identify the number 2* (or a*, a > 0) for any irrational x. By identifying the
number a* for both rational and irrational x, we eliminate any “holes” or “gaps” in the graph
of a*. In practice you can use a calculator to find the number a* for irrational x, taking suc-
cessive decimal approximations to x and creating a table similar to Table 1.5.

Exponential functions obey the familiar rules of exponents listed on the next page.
It is easy to check these rules using algebra when the exponents are integers or rational
numbers. We prove them for all real exponents in Chapters 4 and 7.
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Rules for Exponents
Ifa > 0and b > 0, the following rules hold true for all real numbers x and y.

XY — Xty a _ x—y
1. a%a¥=a 2'9_0

3 @y = (@) = a¥ 4. a*-b* = (aby*

a _ [(a)"
s.b,,_(b)

EXAMPLE 2 We illustrate using the rules for exponents.

1. 31.1 _30.7 — 31.1+0.7 — 31.8

(Vio) — -
2. N = (V10)'™" = (V10)* = 10

3. (5\/2)\/2 — 5\/2'\/2 — 52 =25
7787 = (56)7

4\"?_ar_ 2
9 91/2 3 ]

The Natural Exponential Function e*

»n

The most important exponential function used for modeling natural, physical, and eco-
nomic phenomena is the natural exponential function, whose base is the special number
e. The number e is irrational, and its value is 2.718281828 to nine decimal places. It might
seem strange that we would use this number for a base rather than a simple number like 2
or 10. The advantage in using e as a base is that it simplifies many of the calculations in
calculus.

If you look at Figure 1.56a you can see that the graphs of the exponential functions
y = a* get steeper as the base a gets larger. This idea of steepness is conveyed by the
slope of the tangent line to the graph at a point. Tangent lines to graphs of functions are
defined precisely in the next chapter, but intuitively the tangent line to the graph at a
point is a line that just touches the graph at the point, like a tangent to a circle. Figure
1.57 shows the slope of the graph of y = a* as it crosses the y-axis for several values of
a. Notice that the slope is exactly equal to 1 when a equals the number e. The slope is
smaller than 1 if a < e, and larger than 1 if a > e. This is the property that makes the
number e so useful in calculus: The graph of y = ¢* has slope 1 when it crosses the
y-axis.

(a) (b) ©

FIGURE 1.57 Among the exponential functions, the graph of y = e* has the property that the
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller
for a base less than e, such as 2%, and larger for a base greater than e, such as 3*.
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In Chapter 3 we use that slope property to prove e is the number the quantity
(1 + 1/x)* approaches as x becomes large without bound. That result provides one way to
compute the value of e, at least approximately. The graph and table in Figure 1.58 show the
behavior of this expression and how it gets closer and closer to the line y =
e ~ 2.718281828 as x gets larger and larger. (This /imit idea is made precise in the next
chapter.) A more complete discussion of e is given in Chapter 7.

y
DTN =
x|+ 1 0
1000 | 27169 . 18T
2000 2.7176 J@) =(1+1/%) Al
3000 27178
4000 2.7179 sk
5000 2.7180 y =2.718281...
6000 27181 2 ﬁ
7000 2.7181
1 ! ] ] ] | ] | | | N

-10 -8 -6 -4 -2 0 2 4 6 8 10

FIGURE 1.58 A graph and table of values for f(x) = (1 + 1/x)" both suggest that as x gets
larger and larger, f(x) gets closer and closer to e ~ 2.7182818....

Exponential Growth and Decay

The exponential functions y = e, where & is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function y = y, e is a model for exponential
growth if £ > 0 and a model for exponential decay if £ < 0. Here y, represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by y = P+ e, where P is the initial investment, 7 is the interest
rate as a decimal, and ¢ is time in units consistent with 7. An example of exponential decay
is the model y = A4+ e—1.leo*4t’ which represents how the radioactive element carbon-14
decays over time. Here A4 is the original amount of carbon-14 and ¢ is the time in years.
Carbon-14 decay is used to date the remains of dead organisms such as shells, seeds, and
wooden artifacts. Figure 1.59 shows graphs of exponential growth and exponential decay.

(a) (®)

FIGURE 1.59 Graphs of (a) exponential growth, £ = 1.5 > 0, and (b) exponential decay,
k=-12<0.

EXAMPLE 3  Investment companies often use the model y = Pe' in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2000 at an
annual interest rate of 5.5%.

Solution  Let# = 0 represent 2000, t = 1 represent 2001, and so on. Then the exponen-
tial growth model is y(¢) = Pe'’, where P = 100 (the initial investment), » = 0.055 (the
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annual interest rate expressed as a decimal), and 7 is time in years. To predict the amount in
the account in 2004, after four years have elapsed, we take ¢ = 4 and calculate

y(4) — 100604055(4)
= 100¢°%

124.61. Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1. u

EXAMPLE 4  Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If y, is the number of radioactive nuclei present at time zero, the number
still present at any later time ¢ will be

y=ype ", r> 0.

The number 7 is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined ex-
perimentally to be about » = 1.2 X 10™* when # is measured in years. Predict the percent
of carbon-14 present after 866 years have elapsed.

Solution  If we start with an amount y, of carbon-14 nuclei, after 866 years we are left
with the amount

¥(866) = yj 2 (71:2X107)(866)
~ (0.901)yy. Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, so
about 10% of the original nuclei have decayed. In Example 7 in the next section, you will
see how to find the number of years required for half of the radioactive nuclei present in a
sample to decay (called the half-life of the substance). ]

You may wonder why we use the family of functions y = e for different values of the con-
stant k instead of the general exponential functions y = a*. In the next section, we show
that the exponential function a* is equal to ¢® for an appropriate value of k. So the formula

y = e covers the entire range of possibilities, and we will see that it is easier to use.

Sketching Exponential Curves

Applying the Laws of Exponents

In Exercises 1-6, sketch the given curves together in the appropriate Use the laws of exponents to simplify the expressions in Exercises
coordinate plane and label each curve with its equation. 11-20.

1L y=2%y=4y=3%y= (/5" 11. 16>- 1617 12. 9'/3.91/0

2y =¥,y =8,y = 2%y = (/47 TR TR

3.y=2"andy = -2 4. y=3"andy = -3 437 3%3

5. p=etandy = 1/e* 6. y= —efandy = —e 15. (25'%)* 16. (13V2)V22
In each of Exercises 7-10, sketch the shifted exponential curves. 17. 2V3.7V3 18. (\/5)1/2 : (\/E)l/z

7.y=2"—landy =27 -1
8. y=3+2andy=3"+2

9. y=1—¢e'andy=1—c¢
10. y= -1 —¢‘andy = —1 — ¢

-X

19. (%)4 20. (%)2
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Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises
21-24.

1

a. Express the amount of phosphorus-32 remaining as a function
of time 7.

b. When will there be 1 gram remaining?

21. f(x) = 22. g(f) = cos(e™’ 32. If John invests $2300 in a savings account with a 6% interest rate
2+ e" g
3 compounded annually, how long will it take until John’s account
23. g() = V1 + 37 24. f(x) = T has a balance of $4150?
Applications 33. Doubling your money Determine how much time is required

In Exercises 25-28, use graphs to find approximate solutions.

26. ¢* =
28.3 -2 =0

25. 2" =5
27. 3 —-05=0

In Exercises 29-36, use an exponential model and a graphing calcula-

tor to estimate the answer in each problem.

29. Population growth The population of Knoxville is 500,000 and
is increasing at the rate of 3.75% each year. Approximately when
will the population reach 1 million?

30. Population growth The population of Silver Run in the year

1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.
b. Approximately when did the population reach 50,0007

34.

35.

36.

for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

Tripling your money Determine how much time is required for
an investment to triple in value if interest is earned at the rate of
5.75% compounded continuously.

Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

31. Radioactive decay The half-life of phosphorus-32 is about

14 days. There are 6.6 grams present initially.

1 6 | Inverse Functions and Logarithms
U

A function that undoes, or inverts, the effect of a function f is called the inverse of f.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function y = In x as the inverse of the exponential function
y = ¢%, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion f(x) = x? assigns the same value, 1, to both of the numbers —1 and +1; the sines of
/3 and 27/3 are both V/3/2. Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

DEFINITION A function f(x) is one-to-one on a domain D if f(x;) # f(x2)
whenever x; # x; in D.

EXAMPLE 1  Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.



I

(a) One-to-one: Graph meets each
horizontal line at most once.

y y:xz

Same y-value

/| ]
1 f Same y-value
[ \ 0.5| / \
} I‘ x i i x
-1 0 1 T 5w
6 6 /
y =sinx

(b) Not one-to-one: Graph meets one or
more horizontal lines more than once.

FIGURE 1.60 (a)y = x>and y = Vx are
one-to-one on their domains (—00, 00) and
[0, 00). (b) y = x*and y = sin x are not
one-to-one on their domains (—00, 00).
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(a) f(x) = VA is one-to-one on any domain of nonnegative numbers because Vx; #
V/x, whenever x; # x,.

(b) g(x) = sinx is not one-to-one on the interval [0, 7] because sin (7/6) = sin (577/6).
In fact, for each element x; in the subinterval [0, 7r/2) there is a corresponding ele-
ment x; in the subinterval (7/2, 7] satisfying sin x; = sinx,, so distinct elements in
the domain are assigned to the same value in the range. The sine function is one-to-
one on [0, 7r/2], however, because it is an increasing function on [0, 77/2] giving dis-
tinct outputs for distinct inputs. ]

The graph of a one-to-one function y = f(x) can intersect a given horizontal line at
most once. If the function intersects the line more than once, it assumes the same y-value
for at least two different x-values and is therefore not one-to-one (Figure 1.60).

The Horizontal Line Test for One-to-One Functions
A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.

DEFINITION  Suppose that f is a one-to-one function on a domain D with range
R. The inverse function f ! is defined by

f7Ub) = a if f(a) = b.
The domain of ! is R and the range of f ' is D.

The symbol f~! for the inverse of f is read “f inverse.” The “—1” in ! is not an
exponent; f~'(x) does not mean 1/f(x). Notice that the domains and ranges of f and f '
are interchanged.

EXAMPLE 2  Suppose a one-to-one function y = f(x) is given by a table of values

A I I O N O . N A N

3
fo | 3 0 45 | 7| 105 | 15 | 205 | 27 | 345 |

A table for the values of x = f~'(y) can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for f:

y | 3 ‘ 4.5 ‘ 7 ‘ 10.5 | 15 | 20.5 | 27 ‘ 345 |
ol 2 sl a s 6 [ 7] 8 | =
If we apply f to send an input x to the output f(x) and follow by applying f ' to f(x)
we get right back to x, just where we started. Similarly, if we take some number y in the
range of f, apply £ to it, and then apply f to the resulting value f~'(y), we get back the

value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

(f e Hlx) =x, for all x in the domain of f

(fe f YOy =y,  forallyinthe domain of f~! (or range of f)
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Only a one-to-one function can have an inverse. The reason is that if f(x;) = y and
f(x2) = y for two distinct inputs x; and x,, then there is no way to assign a value to f~'(y)
that satisfies both £ '(f(x;)) = x; and £ '(f(x2)) = x».

A function that is increasing on an interval so it satisfies the inequality f(x;) > f(x;)
when x, > x) is one-to-one and has an inverse. Decreasing functions also have an inverse.
Functions that are neither increasing nor decreasing may still be one-to-one and have an
inverse, as with the function f(x) = 1/x for x # 0 and f(0) = 0, defined on (—00, 00)
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function
from its graph, we start at a point x on the x-axis, go vertically to the graph, and then move
horizontally to the y-axis to read the value of y. The inverse function can be read from the
graph by reversing this process. Start with a point y on the y-axis, go horizontally to the
graph of y = f(x), and then move vertically to the x-axis to read the value of x = f~!(y)
(Figure 1.61).

y = f(x) x=f7)

RANGE OF f
=
DOMAIN OF f !

=

0 X 0 X .
DOMAIN OF f RANGE OF f~

(a) To find the value of f at x, we start at x,

(b) The graph of f~!is the graph of £, but
go up to the curve, and then over to the y-axis.

with x and y interchanged. To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of £~ is the
range of f. The range of f ~1is the domain of f.

X y
0 ’
> PERE: |
g (@) 7 _ y=f"
a |
2 |05 = 5
’ 3
e / o
// g
y (b, a) Z
7 &
//
0/ y x
, 0
e DOMAIN OF f ~! DOMAIN OF f !
//
7
7
7

(c) To draw the graph of £~ in the
more usual way, we reflect the
system across the line y = x.

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of £ !
as a function of x.

FIGURE 1.61 Determining the graph of y = f~!(x) from the graph of y = f(x). The graph
of f~!is obtained by reflecting the graph of f about the line y = x.

We want to set up the graph of ™! so that its input values lie along the x-axis, as is
usually done for functions, rather than on the y-axis. To achieve this we interchange the x



FIGURE 1.62 Graphing

f(x) =(1/2)x + land f'(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x (Example 3).

0

FIGURE 1.63 The functions y = Vx
andy = x%, x = 0, are inverses of one
another (Example 4).
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and y axes by reflecting across the 45° line y = x. After this reflection we have a new graph
that represents f . The value of f~'(x) can now be read from the graph in the usual way,
by starting with a point x on the x-axis, going vertically to the graph, and then horizontally
to the y-axis to get the value of £ '(x). Figure 1.61 indicates the relationship between the
graphs of f and f~!. The graphs are interchanged by reflection through the line y = x.
The process of passing from f to f ! can be summarized as a two-step procedure.

1. Solve the equation y = f(x) for x. This gives a formula x = f~(y) where x is ex-
pressed as a function of y.

2. Interchange x and y, obtaining a formula y = f~!(x) where f ! is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 3  Find the inverse of y = %x + 1, expressed as a function of x.

Solution
1. Solve for x in terms of y: y = %x +1
2y =x+2
x =2 —2.
2. Interchangexandy. y = 2x — 2.
The inverse of the function f(x) = (1/2)x + 1 is the function f~'(x) = 2x — 2. (See
Figure 1.62.) To check, we verify that both composites give the identity function:
ey =2(bx1)—2=xr2-2-0

f(f_l(x))=%(2x—2)+1=x—1+1=x. .

EXAMPLE 4  Find the inverse of the function y = x2,x = 0, expressed as a function
of x.
Solution ~ We first solve for x in terms of y:

y=x

\/)_/=\/x_= |x| =X |x| = x because x = 0
We then interchange x and y, obtaining
y = V.

The inverse of the function y = x2,x = 0, is the function y = Vx (Figure 1.63).

Notice that the function y = x% x = 0, with domain restricted to the nonnegative
real numbers, is one-to-one (Figure 1.63) and has an inverse. On the other hand, the func-
tion y = x2, with no domain restrictions, is not one-to-one (Figure 1.60b) and therefore
has no inverse. [ ]

Logarithmic Functions

If a is any positive real number other than 1, the base a exponential function f(x) = a* is
one-to-one. It therefore has an inverse. Its inverse is called the logarithm function with
base a.

DEFINITION The logarithm function with base a, y = log, x, is the inverse
of the base a exponential function y = a*(a > 0,a # 1).
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(@)

(b)

FIGURE 1.64 (a) The graph of 2* and its
inverse, log, x. (b) The graph of e and its
inverse, In x.

HISTORICAL BIOGRAPHY*

John Napier
(1550-1617)

The domain of log, x is (0, o), the range of a*. The range of log, x is (— 00, o), the do-
main of a”.

Figure 1.23 in Section 1.1 shows the graphs of four logarithmic functions witha > 1.
Figure 1.64a shows the graph of y = log, x. The graph of y = a*, a > 1, increases rap-
idly for x > 0, so its inverse, y = log, x, increases slowly for x > 1.

Because we have no technique yet for solving the equation y = a* for x in terms of y,
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of y = log, x by reflecting the graph of the exponential
y = a” across the line y = x. Figure 1.64 shows the graphs fora = 2 anda = e.

Logarithms with base 2 are commonly used in computer science. Logarithms with
base e and base 10 are so important in applications that calculators have special keys for
them. They also have their own special notation and names:

log.x iswrittenas Inx.
logipx is writtenas logx.

The function y = Inx is called the natural logarithm function, and y = log x is
often called the common logarithm function. For the natural logarithm,

hx=y © & =x

In particular, if we set x = e, we obtain

Ine =1

because e! = e.

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in
arithmetic calculation before the modern electronic computer. What made them so useful
is that the properties of logarithms reduce multiplication of positive numbers to addition of
their logarithms, division of positive numbers to subtraction of their logarithms, and expo-
nentiation of a number to multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case
when r is an irrational number cannot be dealt with properly until Chapter 4. We also es-
tablish the validity of the rules for logarithmic functions with any base a in Chapter 7.

THEOREM 1—Algebraic Properties of the Natural Logarithm For any numbers
b > 0and x > 0, the natural logarithm satisfies the following rules:

1. Product Rule: Inbx = Inb + Inx

2. Quotient Rule: ln% =Inb —Inx

3. Reciprocal Rule: ln% = —Inx Rule 2 with b = 1
4. Power Rule: Inx" = rinx

*To learn more about the historical figures mentioned in the text and the development of many major ele-
ments and topics of calculus, visit www.aw.com/thomas.
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EXAMPLE 5  Here are examples of the properties in Theorem 1.

a) In4 + Insinx = In (4 sinx Product Rule
(@) ( )
() 2t 13 I+ 1) — InQ2x — 3) Quotient Rule
() ln% = —In8 Reciprocal Rule
=—In2>=—-3In2 Power Rule n

Because a” and log,, x are inverses, composing them in either order gives the identity function.

Inverse Properties for «* and log, x
1.Base a: a'°%* = x, log, a* = x, a>0,a#1,x>0

2.Basce: ™ = x, Ine* = x, x>0

In

Substituting a” for x in the equation x = ¢™” enables us to rewrite a* as a power of e:

x
a* = eln (@) Substitute a* for x in x = ™,
= exlna Power Rule for logs
= e(ln ”)x, Exponent rearranged

Thus, the exponential function a” is the same as ¢ for k = Ina.

Every exponential function is a power of the natural exponential function.
a¥ = exlna

That is, a* is the same as e* raised to the power In a: a* = e** for k = Ina.

For example,

and 573): — e(lnS)(*?’x) — e*3xln5'

x — ,(n2)x _ In2
2v_e(n )x_exn ,
Returning once more to the properties of a* and log, x, we have
_ log, x . v
Inx = In (a “ ) Inverse Property for a* and log, x
= (IOgax)(ln a). Power Rule for logarithms, with » = log, x

Rewriting this equation as log, x = (Inx)/(In @) shows that every logarithmic function is a
constant multiple of the natural logarithm In x. This allows us to extend the algebraic prop-
erties for In x to log, x. For instance, log, bx = log,b + log,x.

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.
Inx

logax=m (@a>0,a#1)

Applications

In Section 1.5 we looked at examples of exponential growth and decay problems. Here we
use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6  If $1000 is invested in an account that earns 5.25% interest compounded
annually, how long will it take the account to reach $2500?



